Loading...

Contoh Soal Gerak Benda di Bidang Datar dan Pembahasannya

Loading...
Advertisement
Pada kesempatan kali ini, kita akan membahas tentang kumpulan soal dan pembahasan tentang gerak benda di bidang datar. Berbicara mengenai gerak, tentu selalu ada kaitannya dengan penyebab terjadinya gerak tersebut. Suatu benda yang mula-mula diam kemudian menjadi bergerak atau mula-mula bergerak menjadi diam itu disebabkan oleh pengaruh gaya.

Konsep dan kaitan antara gaya dan gerak benda pertama kali dijelaskan oleh Sir Isaac Newton dalam 3 hukumnya yang terkenal. Selain itu, gerak benda di bidang datar terutama untuk bidang kasar juga selalu berkaitan dengan gaya gesek. Oleh karena itu, sebelum kita membahas soal, kita bahas terlebih dahulu konsep tentang Hukum Newton dan gaya gesek yaitu sebagai berikut.

Konsep Hukum Newton
Hukum I Newton
Hukum II Newton
Hukum III Newton
ΣF = 0
ΣF = ma
Faksi = Freaksi
Keadaan benda:
diam (v = 0  m/s)
bergerak lurus beraturan atau GLB (v = konstan)
Keadaan benda:
benda bergerak lurus berubah beraturan atau GLBB (v  konstan)
Sifat gaya aksi reaksi:
sama besar
berlawanan arah
terjadi pada 2 objek berbeda

Penjelasan lengkap mengenai Hukum Newton, baca artikel tentang: Bunyi dan Rumus Hukum Newton I, II, dan III Beserta Contohnya.

Konsep Gaya Gesek
Gaya Gesek Statis
Gaya Gesek Kinetis
fs = μN
fk μN
Bekerja pada benda:
diam (v = 0  m/s)
tepat akan bergerak (fmaksimum)
Bekerja pada benda:
bergerak (baik GLB maupun GLBB)

Penjelasan lengkap mengenai gaya gesek, baca artikel tentang: Definisi, Sifat, Jenis, Rumus dan Contoh Soal tentang Gaya Gesek.

Hubungan Gaya Gesek dan Gerak Benda
Besar Gaya Luar
Keadaan Benda
Jika F < fmaksimum
Diam, berlaku Hukum I Newton
Jika F > fmaksimum
Bergerak, berlaku Hukum II Newton dan bekerja gaya gesek kinetik (fk)

Oke, jika kalian sudah paham mengenai konsep Hukum Newton dan gaya gesek, kini saatnya kita bahas beberapa soal tentang gerak benda di bidang datar. Simak baik-baik uraian berikut ini.
Contoh Soal #1
Sebuah benda bermassa 2 kg bergerak dengan kecepatan awal 5 m/s di atas bidang datar licin, kemudian benda tersebut diberi gaya tetap searah dengan gerak benda. Setelah menempuh jarak 4 m, kecepatan benda menjadi 7 m/s. Tentukan besar gaya tersebut.
Jawab
Diketahui:
v0 = 5 m/s
vt = 7 m/s
m = 2 kg
s = 4 m
Ditanyakan: Gaya (F)
Untuk lebih jelas dalam memahami soal di atas, kita gambarkan terlebih dahulu ilustrasi gerak benda sebagai berikut.
Contoh Soal dan pembahasan Gerak Benda di Bidang Datar
Karena kecepatan berubah atau tidak konstan (v  konstan), maka benda bergerak lurus berubah beraturan. Sehingga kita gunakan rumus kecepatan pada GLBB untuk menentukan besar percepatan.
vt2 = v0+ 2as
2as = vt2  v02
a = (vt2  v02)/2s
a = (72  52)/2(4)
a = (49  25)/8
a = 24/8
a = 3 m/s2
Setelah besar percepatan kita dapatkan, langkah selanjutnya adalah menentukan besar gaya dengan menggunakan Hukum II Newton sebagai berikut.
F = ma
F = (2)(3)
F = 6 N
Dengan demikian, gaya yang bekerja pada benda adalah 6 N
Penjelasan rinci mengenai rumus GLBB, silahkan baca artikel tentang: Definisi, Ciri, Jenis, Rumus, Grafik dan Contoh Soal tentang Gerak Lurus Berubah Beraturan.

Contoh Soal #2

Balok A bermassa 4 kg diletakkan di atas balok B yang bermassa 6 kg. Kemudian balok B ditarik dengan gaya F di atas lantai mendatar licin sehingga gabungan balok itu mengalami percepatan 1,8 m/s2. Jika tiba-tiba balok A terjatuh, maka berapakah percepatan yang dialami oleh balok B saja?
Jawab
Diketahui:
mA = 4 kg
mB = 6 kg
a1 = 1,8 m/s2
Ditanyakan: Percepatan (a)
Pada kasus ini ada dua kondisi gerak benda, yaitu kondisi pertama di mana balok A dan balok B bergerak secara bersama-sama dan kondisi kedua di mana balok B bergerak sendirian (karna balok A terjatuh). Oleh karena itu, kita bahas satu-satu kondisi tersebut.
Kondisi pertama
Contoh Soal dan pembahasan Gerak Benda di Bidang Datar
Karena kedua balok bergerak secara bersama-sama, maka besar gaya dipengaruhi oleh gabungan massa kedua benda. Kita gunakan Hukum II Newton yaitu sebagai berikut.
F = ma
F = (ma + mB)a1
F = (4 + 6)(1,8)
F = 18 N
Kondisi kedua
Contoh Soal dan pembahasan Gerak Benda di Bidang Datar
Besarnya gaya F pada kondisi pertama juga masih berlaku untuk kondisi kedua, namun karena tidak balok A terjatuh, maka gaya F hanya bekerja pada balok B saja.
F = mBa2
18 = 6a2
a2 = 18/6
a2 = 3 m/s2
Jadi, percepatan yang dialami balok B adalah sebesar 3 m/s2.

Contoh Soal #3
Sebuah balok es yang memiliki massa 25 kg didorong Zeni dengan sudut 30°. Jika balok es bergerak dengan percepatan konstan sebesar 1/43 m/s2, maka tentukan besar gaya dorongan Zeni tersebut.
Jawab
Diketahui:
m = 25 kg
a = 1/43 m/s2
θ = 30°
Ditanyakan: gaya dorong (F)
Langkah pertama adalah menggambarkan diagram gaya yang bekerja pada objek. Seperti yang diperlihatkan pada gambar berikut ini.
Contoh Soal dan pembahasan Gerak Benda di Bidang Datar
Tentu kalian tahu kalau balok es permukaannya licin, sehingga kita dapat mengabaikan gaya gesek. Oleh karena tidak ada gaya gesek, maka kita tidak perlu menentukan resultan gaya pada sumbu-Y (vertikal). Berdasarkan Hukum II Newton, maka resultan gaya pada sumbu-X (horizontal) adalah sebagai berikut.
ΣFX = ma
F cos θ = ma
F cos 30° = (25)( 1/43)
F(1/23) = 25/43
F = (25/43)/(1/23)
F = 25/2
F = 12,5 N
Jadi, Zeni mendorong balok es tersebut dengan gaya sebesar 123,5 N
Konsep gerak benda di bidang datar licin dapat kalian pelajari seluruhnya dalam artikel tentang: Hukum Newton pada Gerak Benda di Bidang Datar Licin.

Contoh Soal #4
Sebuah balok bermassa 20 kg berada di atas lantai mendatar. Kemudian balok ditarik dengan gaya sebesar F mendatar. Apabila koefisien gesek statis sebesar 0,6, koefisien gesek kinetis sebesar 0,3 dan g = 10 m/s2, maka tentukan gaya gesek yang dirasakan balok dan percepatan balok jika:
F = 100 N
F = 140 N
Jawab
Diketahui:
m = 20 kg
μs = 0,6
μk = 0,3
g = 10 m/s2
Ditanyakan: Gaya gesek (f)­­ dan percepatan (a)
Langkah pertama, kita gambarkan terlebih dahulu diagram gaya-gaya yang bekerja pada benda secara lengkap seperti yang terlihat pada gambar berikut.
Contoh Soal dan pembahasan Gerak Benda di Bidang Datar
Berdasarkan diagram gaya yang bekerja pada balok di atas, besarnya gaya normal dapat ditentukan dengan menggunakan Hukum II Newton sebagai berikut.
ΣFY = ma
 w = ma
Karena tidak terjadi gerak dalam arah vertikal, maka a = 0 sehingga
 w = 0
 mg = 0
N = mg
N = (20)(10)
N = 200 N
Langkah selanjutnya adalah menentukan pengaruh gaya F dengan cara menghitung dahulu besar gaya gesek statis maksimumnya (fs maks)
fs max = μsN
fs max = (0,6)(200)
fs max = 120 N

F = 100 N
F < fs max berati balok diam (bekerja gaya gesek statis fs) dan berlaku Hukum I Newton sebagai berikut.
ΣFX = 0
 fs = 0
100  fs = 0
fs = 100 N
Jadi, dengan gaya tarik sebesar 100 N, besar gaya gesek yang dirasakan benda adalah 100 N.

F = 140 N
F > fs max berati balok bergerak (bekerja gaya gesek kinetis fk) dan berlaku Hukum II Newton sebagai berikut.
ΣFX = ma
 fk = ma
 μkN = ma
140  (0,3)(200) = 20a
140  60 = 20a
80 = 20a
a = 4 m/s2
Jadi, dengan gaya tarik sebesar 140 N, besar percepatan gerak benda adalah 4 m/s2.

Contoh Soal #5
Anis menarik sebuah balok yang bermassa 10 kg dengan gaya sebesar 100 N dengan arah membentuk sudut 37° terhadap lantai. Koefisien gesek statis dan kinetis benda terhadap lantai adalah 0,5 dan 0,4. Jika percepatan gravitasi di tempat itu adalah 10 m/s2. Maka tentukan bergerak atau tidak benda tersebut. jika bergerak tentukan percepatannya.
Jawab
Diketahui:
m = 10 kg
F = 100 N
θ = 37°
μs = 0,5
μk = 0,4
g = 10 m/s2
Ditanyakan: diam atau bergerak, jika bergerak berapa a.
Seperti biasa, langkah pertama adalah menggambarkan diagram gaya yang bekerja pada benda tersebut, seperti yang ditunjukkan pada gambar di bawah ini.
Contoh Soal dan pembahasan Gerak Benda di Bidang Datar
Langkah kedua adalah menentukan besar gaya normal N dengan menggunakan Hukum I Newton sebagai berikut.
ΣFY = 0
N + F sin θ  w = 0
N = w  F sin θ
N = mg  F sin θ
N = (10)(10)  (100)(sin 37°)
N = 100  (100)(0,6)
N = 100  60
N = 40 N
Langkah selanjutnya adalah menghitung dahulu besar gaya gesek statis maksimumnya (fs maks) sebagai berikut.
fs maks = μsN
fs maks = (0,5)(40)
fs maks = 20 N
Karena F = 100 N > fs maks maka balok yang ditarik Anis sudah bergerak sehingga bekerja gaya gesek kinetik (fk). Dengan menggunakan Hukum II Newton, maka percepatan gerak balok adalah sebagai berikut.
ΣFX = ma
F cos θ  fk = ma
F cos θ  μkN = ma
(100)(cos 37°)  (0,4)(40) = 10a
(100)(0,8)  16 = 10a
80  16 = 10a
64 = 10a
a = 6,4 m/s2
Jadi, balok tersebut bergerak dengan percepatan sebesar 6,4 m/s2.
Konsep gerak benda di bidang datar kasar dapat kalian pelajari seluruhnya dalam artikel tentang: Hukum Newton pada Gerak Benda di Bidang Datar Kasar.

Demikianlah artikel tentang kumpulan contoh soal dan pembahasan tentang gerak benda di bidang datar beserta gambar. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.

Post a Comment

Mohon berkomentar secara bijak dengan bahasa yang sopan dan tidak keluar dari topik permasalahan dalam artikel ini. Dan jangan ikut sertakan link promosi dalam bentuk apapun.
Terimakasih.

emo-but-icon

Home item

Materi Terbaru